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[1–15] 
Artificial Intelligence (AI) is progressing 
rapidly, and companies are shifting their 
focus to developing generalist AI systems 
that can autonomously act and pursue 
goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s 
impact, with risks that include large-scale 
social harms, malicious uses, and an 
irreversible loss of human control over 
autonomous AI systems. Although 
researchers have warned of extreme risks 
from AI [1], there is a lack of consensus 
about how to manage them.  Society’s 
response, despite promising first steps, is 
incommensurate with the possibility of 
rapid, transformative progress that is 
expected by many experts. AI safety 
research is lagging. Present governance 
initiatives lack the mechanisms and 
institutions to prevent misuse and 
recklessness and barely address 
autonomous systems. Drawing on lessons 
learned from other safety-critical 
technologies, we outline a comprehensive 
plan that combines technical research and 
development (R&D) with proactive, 
adaptive governance mechanisms for a 
more commensurate preparation. 
 
RAPID PROGRESS, HIGH STAKES 
Present deep-learning systems still lack 
important capabilities, and we do not know 
how long it will take to develop them. 

However, companies are engaged in a race 
to create generalist AI systems that match or 
exceed human abilities in most cognitive 
work [16,17]. They are rapidly deploying 
more resources and developing new 
techniques to increase AI capabilities, with 
investment in training state-of-the-art 
models tripling annually [18]. 

There is much room for further advances 
because tech companies have the cash 
reserves needed to scale the latest training 
runs by multiples of 100 to 1000 [19]. 
Hardware and algorithms will also improve: 
AI computing chips have been getting 1.4 
times more cost-effective, and AI training 
algorithms 2.5 times more efficient, each 
year [20,21]. Progress in AI also enables 
faster AI progress [22]—AI assistants are 
increasingly used to automate programming 
[23], data collection [24,25], and chip design 
[26]. 

There is no fundamental reason for AI 
progress to slow or halt at human-level 
abilities. Indeed, AI has already surpassed 
human abilities in narrow domains such as 
playing strategy games and predicting how 
proteins fold [27–29]. Compared with 
humans, AI systems can act faster, absorb 
more knowledge, and communicate at a 
higher bandwidth. Additionally, they can be 
scaled to use immense computational 
resources and can be replicated by the 
millions. 

We do not know for certain how the 
future of AI will unfold. However, we must 
take seriously the possibility that highly 
powerful generalist AI systems that 
outperform human abilities across many 
critical domains will be developed within this 
decade or the next. What happens then? 

More capable AI systems have larger 
impacts. Especially as AI matches and 
surpasses human workers in capabilities and 
cost-effectiveness, we expect a massive 
increase in AI deployment, opportunities, 
and risks. If managed carefully and 
distributed fairly, AI could help humanity 
cure diseases, elevate living standards, and 
protect ecosystems. The opportunities are 
immense. 

But alongside advanced AI capabilities 
come large-scale risks. AI systems threaten 
to amplify social injustice, erode social 
stability, enable large-scale criminal activity, 
and facilitate automated warfare, 
customized mass manipulation, and 
pervasive surveillance [2,30–34].  

Many risks could soon be amplified, and 
new risks created, as companies work to 

develop autonomous AI: systems that can 
use tools such as computers to act in the 
world and pursue goals [35–39]. Malicious 
actors could deliberately embed undesirable 
goals. Without R&D breakthroughs (see next 
section), even well-meaning developers may 
inadvertently create AI systems that pursue 
unintended goals: The reward signal used to 
train AI systems usually fails to fully capture 
the intended objectives, leading to AI 
systems that pursue the literal specification 
rather than the intended outcome. 
Additionally, the training data never 
captures all relevant situations, leading to AI 
systems that pursue undesirable goals in 
new situations encountered after training. 

Once autonomous AI systems pursue 
undesirable goals, we may be unable to keep 
them in check. Control of software is an old 
and unsolved problem: computer worms 
have long been able to proliferate and avoid 
detection [40]. However, AI is making 
progress in critical domains such as hacking, 
social manipulation, and strategic planning 
[35,41] and may soon pose unprecedented 
control challenges. To advance undesirable 
goals, AI systems could gain human trust, 
acquire resources, and influence key 
decision-makers. To avoid human 
intervention [3], they might copy their 
algorithms across global server networks [4]. 
In open conflict, AI systems could 
autonomously deploy a variety of weapons, 
including biological ones. AI systems having 
access to such technology would merely 
continue existing trends to automate 
military activity. Finally, AI systems will not 
need to plot for influence if it is freely 
handed over. Companies, governments, and 
militaries may let autonomous AI systems 
assume critical societal roles in the name of 
efficiency. 

Without sufficient caution, we may 
irreversibly lose control of autonomous AI 
systems, rendering human intervention 
ineffective. Large-scale cybercrime, social 
manipulation, and other harms could 
escalate rapidly. This unchecked AI 
advancement could culminate in a large-
scale loss of life and the biosphere, and the 
marginalization or extinction of humanity. 

 We are not on track to handle these risks 
well. Humanity is pouring vast resources into 
making AI systems more powerful but far 
less into their safety and mitigating their 
harms. Only an estimated 1 to 3% of AI 
publications are on safety [42,43]. For AI to 
be a boon, we must reorient; pushing AI 
capabilities alone is not enough. 
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We are already behind schedule for this 
reorientation. The scale of the risks means 
that we need to be proactive, because the 
costs of being unprepared far outweigh 
those of premature preparation. We must 
anticipate the amplification of ongoing 
harms, as well as new risks, and prepare for 
the largest risks well before they 
materialize.  
 
REORIENT TECHNICAL R&D 
There are many open technical challenges in 
ensuring the safety and ethical use of 
generalist, autonomous AI systems. Unlike 
advancing AI capabilities, these challenges 
cannot be addressed by simply using more 
computing power to train bigger models. 
They are unlikely to resolve automatically as 
AI systems get more capable [5,11,44–47] 
and require dedicated research and 
engineering efforts. In some cases, leaps of 
progress may be needed; we thus do not 
know whether technical work can 
fundamentally solve these challenges in 
time. However, there has been 
comparatively little work on many of these 
challenges. More R&D may thus facilitate 
progress and reduce risks. 

A first set of R&D areas needs 
breakthroughs to enable reliably safe AI. 
Without this progress, developers must 
either risk creating unsafe systems or falling 
behind competitors who are willing to take 
more risks. If ensuring safety remains too 
difficult, extreme governance measures 
would be needed to prevent corner-cutting 
driven by competition and overconfidence.  
These R&D challenges include the following: 
 
Oversight and honesty More capable AI 
systems can better exploit weaknesses in 
technical oversight and testing [44,48,49], 
for example, by producing false but 
compelling output [45,50,51]. 
 
Robustness AI systems behave 
unpredictably in new situations. Whereas 
some aspects of robustness improve with 
model scale [52], other aspects do not or 
even get worse [11,53–55]. 
 
Interpretability and transparency AI 
decision-making is opaque, with larger, 
more capable models being more complex 
to interpret. So far, we can only test large 
models through trial and error. We need to 
learn to understand their inner workings 
[56]. 
 
Inclusive AI development AI advancement 
will need methods to mitigate biases and 

integrate the values of the many populations 
it will affect [31,57]. 
 
Addressing emerging challenges Future AI 
systems may exhibit failure modes that we 
have so far seen only in theory or lab 
experiments, such as AI systems taking 
control over the training reward-provision 
channels or exploiting weaknesses in our 
safety objectives and shutdown mechanisms 
to advance a particular goal [3,6–8]. 

A second set of R&D challenges needs 
progress to enable effective, risk-adjusted 
governance or to reduce harms when safety 
and governance fail.  
 
Evaluation for dangerous capabilities As AI 
developers scale their systems, unforeseen 
capabilities appear spontaneously, without 
explicit programming [58]. They are often 
only discovered after deployment [59–61]. 
We need rigorous methods to elicit and 
assess AI capabilities and to predict them 
before training. This includes both generic 
capabilities to achieve ambitious goals in the 
world (e.g., long-term planning and 
execution) as well as specific dangerous 
capabilities based on threat models (e.g., 
social manipulation or hacking). Present 
evaluations of frontier AI models for 
dangerous capabilities [9], which are key to 
various AI policy frameworks, are limited to 
spot-checks and attempted demonstrations 
in specific settings [4,62,63]. These 
evaluations can sometimes demonstrate 
dangerous capabilities but cannot reliably 
rule them out: AI systems that lacked certain 
capabilities in the tests may well 
demonstrate them in slightly different 
settings or with posttraining enhancements. 
Decisions that depend on AI systems not 
crossing any red lines thus need large safety 
margins. Improved evaluation tools 
decrease the chance of missing dangerous 
capabilities, allowing for smaller margins. 
 
Evaluating AI alignment If AI progress 
continues, AI systems will eventually possess 
highly dangerous capabilities. Before 
training and deploying such systems, we 
need methods to assess their propensity to 
use these capabilities. Purely behavioral 
evaluations may fail for advanced AI 
systems: Similar to humans, they might 
behave differently under evaluation, faking 
alignment [6–8]. 
 
Risk assessment We must learn to assess not 
just dangerous capabilities but also risk in a 
societal context, with complex interactions 
and vulnerabilities. Rigorous risk assessment 
for frontier AI systems remains an open 

challenge owing to their broad capabilities 
and pervasive deployment across diverse 
application areas [10].  
 
Resilience Inevitably, some will misuse or act 
recklessly with AI. We need tools to detect 
and defend against AI-enabled threats such 
as large-scale influence operations, 
biological risks, and cyberattacks. However, 
as AI systems become more capable, they 
will eventually be able to circumvent human-
made defenses. To enable more powerful AI-
based defenses, we first need to learn how 
to make AI systems safe and aligned. 

Given the stakes, we call on major tech 
companies and public funders to allocate at 
least one-third of their AI R&D budget, 
comparable to their funding for AI 
capabilities, toward addressing the above 
R&D challenges and ensuring AI safety and 
ethical use [11]. Beyond traditional research 
grants, government support could include 
prizes, advance market commitments [64], 
and other incentives. Addressing these 
challenges, with an eye toward powerful 
future systems, must become central to our 
field. 

GOVERNANCE MEASURES 
We urgently need national institutions and 
international governance to enforce 
standards that prevent recklessness and 
misuse. Many areas of technology, from 
pharmaceuticals to financial systems and 
nuclear energy, show that society requires 
and effectively uses government oversight 
to reduce risks. However, governance 
frameworks for AI are far less developed and 
lag behind rapid technological progress. We 
can take inspiration from the governance of 
other safety-critical technologies while 
keeping the distinctiveness of advanced AI in 
mind—that it far outstrips other 
technologies in its potential to act and 
develop ideas autonomously, progress 
explosively, behave in an adversarial 
manner, and cause irreversible damage. 
Governments worldwide have taken positive 
steps on frontier AI, with key players, 
including China, the United States, the 
European Union, and the United Kingdom, 
engaging in discussions [65,66] and 
introducing initial guidelines or regulations 
[67–70]. Despite their limitations—often 
voluntary adherence, limited geographic 
scope, and exclusion of high-risk areas like 
military and R&D-stage systems—these are 
important initial steps toward, among 
others, developer accountability, third-party 
audits, and industry standards. 
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Yet these governance plans fall critically 
short in view of the rapid progress in AI 
capabilities. We need governance measures 
that prepare us for sudden AI 
breakthroughs while being politically 
feasible despite disagreement and 
uncertainty about AI timelines. The key is 
policies that automatically trigger when AI 
hits certain capability milestones. If AI 
advances rapidly, strict requirements 
automatically take effect, but if progress 
slows, the requirements relax accordingly. 
Rapid, unpredictable progress also means 
that risk-reduction efforts must be 
proactive—identifying risks from next-
generation systems and requiring 
developers to address them before taking 
high-risk actions. We need fast-acting, tech-
savvy institutions for AI oversight, 
mandatory and much-more rigorous risk 
assessments with enforceable 
consequences (including assessments that 
put the burden of proof on AI developers), 
and mitigation standards commensurate to 
powerful autonomous AI.  
Without these, companies, militaries, and 
governments may seek a competitive edge 
by pushing AI capabilities to new heights 
while cutting corners on safety or by 
delegating key societal roles to autonomous 
AI systems with insufficient human 
oversight, reaping the rewards of AI 
development while leaving society to deal 
with the consequences. 
 
Institutions to govern the rapidly moving 
frontier of AI To keep up with rapid progress 
and avoid quickly outdated, inflexible laws 
[71–73] national institutions need strong 
technical expertise and the authority to act 
swiftly. To facilitate technically demanding 
risk assessments and mitigations, they will 
require far greater funding and talent than 
they are due to receive under almost any 
present policy plan. To address 
international race dynamics, they need the 
affordance to facilitate international 
agreements and partnerships [74,75]. 
Institutions should protect low-risk use and 
low-risk academic research by avoiding 
undue bureaucratic hurdles for small, 
predictable AI models. The most pressing 
scrutiny should be on AI systems at the 
frontier: the few most powerful systems, 
trained on billion-dollar supercomputers, 
that will have the most hazardous and 
unpredictable capabilities [76,77]. 
 
Government insight To identify risks, 
governments urgently need comprehensive 
insight into AI development. Regulators 
should mandate whistleblower protections, 

incident reporting, registration of key 
information on frontier AI systems and their 
datasets throughout their life cycle, and 
monitoring of model development and 
supercomputer usage [12]. Recent policy 
developments should not stop at requiring 
that companies report the results of 
voluntary or underspecified model 
evaluations shortly before deployment 
[67,69]. Regulators can and should require 
that frontier AI developers grant external 
auditors on-site, comprehensive (“white-
box”), and fine-tuning access from the start 
of model development [78]. This is needed 
to identify dangerous model capabilities 
such as autonomous self-replication, large-
scale persuasion, breaking into computer 
systems, developing (autonomous) 
weapons, or making pandemic pathogens 
widely accessible [4,9,13,62,63,79]. 
 
Safety cases Despite evaluations, we cannot 
consider coming powerful frontier AI 
systems “safe unless proven unsafe.” With 
present testing methodologies, issues can 
easily be missed. Additionally, it is unclear 
whether governments can quickly build the 
immense expertise needed for reliable 
technical evaluations of AI capabilities and 
societal-scale risks. Given this, developers of 
frontier AI should carry the burden of proof 
to demonstrate that their plans keep risks 
within acceptable limits. By doing so, they 
would follow best practices for risk 
management from industries, such as 
aviation [80], medical devices [81], and 
defense software [82], in which companies 
make safety cases [14,15,83–85]: structured 
arguments with falsifiable claims supported 
by evidence that identify potential hazards, 
describe mitigations, show that systems will 
not cross certain red lines, and model 
possible outcomes to assess risk. Safety 
cases could leverage developers’ in-depth 
experience with their own systems. Safety 
cases are politically viable even when people 
disagree on how advanced AI will become 
because it is easier to demonstrate that a 
system is safe when its capabilities are 
limited. Governments are not passive 
recipients of safety cases: they set risk 
thresholds, codify best practices, employ 
experts and third-party auditors to assess 
safety cases and conduct independent 
model evaluations, and hold developers 
liable if their safety claims are later falsified. 
 
Mitigation To keep AI risks within acceptable 
limits, we need governance mechanisms 
that are matched to the magnitude of the 
risks [76,86–88]. Regulators should clarify 
legal responsibilities that arise from existing 

liability frameworks and hold frontier AI 
developers and owners legally accountable 
for harms from their models that can be 
reasonably foreseen and prevented, 
including harms that foreseeably arise from 
deploying powerful AI systems whose 
behavior they cannot predict. Liability, 
together with consequential evaluations and 
safety cases, can prevent harm and create 
much-needed incentives to invest in safety. 

Commensurate mitigations are needed 
for exceptionally capable future AI systems, 
such as autonomous systems that could 
circumvent human control. Governments 
must be prepared to license their 
development, restrict their autonomy in key 
societal roles, halt their development and 
deployment in response to worrying 
capabilities, mandate access controls, and 
require information security measures 
robust to state-level hackers until adequate 
protections are ready. Governments should 
build these capacities now. 

To bridge the time until regulations are 
complete, major AI companies should 
promptly lay out “if-then” commitments: 
specific safety measures they will take if 
specific red-line capabilities [9] are found in 
their AI systems. These commitments should 
be detailed and independently scrutinized. 
Regulators should encourage a race-to-the-
top among companies by using the best-in-
class commitments, together with other 
inputs, to inform standards that apply to all 
players. 

To steer AI toward positive outcomes 
and away from catastrophe, we need to 
reorient. There is a responsible path—if we 
have the wisdom to take it. 
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